Robust Representation for Data Analytics

Synopsis
This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary. Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
- प्रतिलिपि अधिकार:
- 2017 Springer
Book Details
- Book Quality:
- ISBN-13:
- 9783319601762
- Publisher:
- Springer International Publishing, Cham
- Date of Addition:
- 2017-08-11T05:13:05Z
- भाषा:
- English
- Categories:
- Computers and Internet, Nonfiction,
- Usage Restrictions:
- This is a copyrighted book.
Choosing a Book Format
EPUB is the standard publishing format used by many e-book readers including iBooks, Easy Reader, VoiceDream Reader, etc. This is the most popular and widely used format.
DAISY format is used by GoRead, Read2Go and most Kurzweil devices.
Audio (MP3) format is used by audio only devices, such as iPod.
Braille format is used by Braille output devices.
DAISY Audio format works on DAISY compatible players such as Victor Reader Stream.
Accessible Word format can be unzipped and opened in any tool that supports .docx files.