Genetic Programming for Image Classification

Synopsis
This book offers several new GP approaches to feature learning for image classification. Image classification is an important task in computer vision and machine learning with a wide range of applications. Feature learning is a fundamental step in image classification, but it is difficult due to the high variations of images. Genetic Programming (GP) is an evolutionary computation technique that can automatically evolve computer programs to solve any given problem. This is an important research field of GP and image classification. No book has been published in this field. This book shows how different techniques, e.g., image operators, ensembles, and surrogate, are proposed and employed to improve the accuracy and/or computational efficiency of GP for image classification. The proposed methods are applied to many different image classification tasks, and the effectiveness and interpretability of the learned models will be demonstrated. This book is suitable as a graduate and postgraduate level textbook in artificial intelligence, machine learning, computer vision, and evolutionary computation.
- Copyright:
- 2021 Springer
Book Details
- Book Quality:
- ISBN-13:
- 9783030659271
- Publisher:
- Springer International Publishing
- Date of Addition:
- 2021-04-22T07:01:19Z
- Language:
- English
- Categories:
- Computers and Internet, Nonfiction, Technology,
- Usage Restrictions:
- This is a copyrighted book.
Choosing a Book Format
EPUB is the standard publishing format used by many e-book readers including iBooks, Easy Reader, VoiceDream Reader, etc. This is the most popular and widely used format.
DAISY format is used by GoRead, Read2Go and most Kurzweil devices.
Audio (MP3) format is used by audio only devices, such as iPod.
Braille format is used by Braille output devices.
DAISY Audio format works on DAISY compatible players such as Victor Reader Stream.
Accessible Word format can be unzipped and opened in any tool that supports .docx files.